TECHNICAL REPORT TR-09-04UC DAVIS, SEPTEMBER 2009. 1

Minimum-Energy Multicast Treein Cognitive Radio Networks

Wei Ren, Xiangyang Xiao, Qing Zhao

Abstract

We address the multicast problem in cognitive radio networks, where secondary users exploit
channels temporarily unused by primary uséies,(spectrum opportunities). The existence of a commu-
nication link between two secondary users depends not only on the transmission power of the secondary
transmitter and the distance between these two users, but also on the occurrence of spectrum opportu-
nities. This dependency on the occurrence of spectrum opportunities complicates the construction of an
efficient multicast tree in cognitive radio networks. By taking into account this dependency, we propose
a low-complexity approximation algorithm with bounded performance guarantee for constructing the
minimum-energy multicast tree, which transforms the multicast problem into a directed Steiner tree
problem. We also demonstrate this dependency by studying the impact of the traffic load of the primary

network on the minimum-energy multicast tree.

I. INTRODUCTION

Multicast can provide better support for one to many commatioas than unicast or broad-
cast [1], and it thus has many potential applications in both civil and military domains, e.g.
streaming media, Internet television, and delivery of situational awareness information and com-
mands on the battlefield. One of the most significant problems in implementing the multicast is to
construct an energy-efficient multicast tree, where several heuristic or approximation algorithms
have been proposed in [2—4] for the conventional wireless networks.

Multicast in cognitive radio (CR) networks has received little attention. In a CR network,
secondary users identify and exploit channels temporarily and locally unused by primary users
without causing unacceptable interference to primary users [5]. When we calculate the energy
consumption for the multicast trees in CR networks, we thus need to consider the energy used

for sensing the availability of the channel as well as the energy used for transmissions. The

9This work was supported by the Army Research Laboratory under Grant DAAD19-01-C-0062, by the Army Research Office
under Grant W911NF-08-1-0467, and by the National Science Foundation under Grant CCF-0830685.
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proportion of the sensing energy is significant especially when spectrum opportunities occur
infrequently. In this case, much more energy is consumed for sensing the channel before each
successful transmission.

Another elusive twist in constructing an efficient multicast tree for CR networks is that the
occurrence of spectrum opportunities is affected by the transmission power of secondary users [6].
If a secondary user uses a high transmission power to reach a relatively large number of multicast
nodes, it must wait for the opportunity that no primary receiver is active within its relatively
large interference region, which happens less often. As discussed above, the secondary user will
spend more sensing energy for the emergence of one opportunity. If, on the other hand, it uses
a low power, it can only reach a small number of multicast nodes, and more transmissions, each
relying on its own opportunities to emerge, are needed to reach all the multicast nodes. This
tradeoff in choosing the secondary users’ transmission power further complicates the construction
of the minimum-energy multicast tree in a CR network.

To summarize, the construction of the minimum-energy multicast tree in a CR network depends
not only on the topology of the secondary network which is essentially determined by the
transmission powers of the secondary users, but also on the occurrence of spectrum opportunities
which is determined by the transmission powers of the secondary users and the traffic load of
the primary network [6]. As a consequence, the minimum-energy multicast tree under a low
primary traffic load may not be optimal under a high primary traffic load.

By considering the impact of the occurrence of spectrum opportunities, we propose an approx-
imation algorithm for constructing the minimum-energy multicast tree of a CR network in this
paper. The basic idea of this algorithm is to formulate the multicast problem as a directed Steiner
tree problem and then apply an approximation algorithm for the directed Steiner tree problem.
The algorithm delivers a solution with a bounded approximation i@tiog® |D|), where|D| is
the number of destinations. Letbe the number of secondary users arttieir maximal degrele
then the running time of the approximation algorithm is giverCh{(2¢n)'s 1Pl| D|210e 1Pl - fp2k),

We also demonstrate the dependency of the minimum-energy multicast tree on the occurrence

of spectrum opportunities by studying the impact of the traffic load of the primary network.

1The degree of a secondary user is defined as the number of secondary users which are within its maximal transmission range.
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II. NETWORK MODEL

We consider a secondary network overlaid with a Poissoniloliséd primary network, where
both networks adopt a slotted transmission structure. Assume that the primary users are mobile

and the relative positions of the secondary users are static.

A. Primary Network

At the beginning of each slot, the primary transmitters are distributed according to a two-
dimensional Poisson point procesS»r with density Apr. To each primary transmitter, its
receiver is uniformly distributed within its transmission range Here we have assumed that alll
the primary transmitters use the same transmission power and the transmitted signals undergo an
isotropic path loss. Based on the displacement theorem [7, Chapter 5], it is easy to see that the
primary receivers form another two-dimensional Poisson point pra¥esswith density Apr.

Note that the two Poisson process€s; and Xpr are correlated.

B. Secondary Network

In contrast to the case in a conventional ad hoc network, whether the communication is
successful between two secondary users depends not only on the transmission power of the
secondary transmitter and the distance between these two users, but also on the availability of
the communication channeld,, the presence of a spectrum opportunity). The latter is determined
by the transmitting and receiving activities in the primary network as discussed below.

The notion of spectrum opportunity in a multicast setting is open for interpretation. Its basic
composition, however, roots in the definition of spectrum opportunity in unicast [8]. Let A be
the secondary transmitter and B its receiver (see Fig. 1). Under the disk signal propagation and
interference model, there exists an opportunity frdnand B if the transmission fromd does
not interfere with nearbyrimary receivers in the solid circle, and the reception &t is not
affected by nearbyrimary transmitters in the dashed circle. The radiug of the solid circle
at A, referred to as the interference range of the secondary users, depends on the transmission
power of A and the interference tolerance of the primary receivers, whereas the daighe
dashed circle (the interference range of the primary users) depends on the transmission power

of the primary users and the interference tolerancé of
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Fig. 1. Definition of spectrum opportunity.

It is clear from the above discussion that spectrum opportunities depend on both transmitting
and receiving activities of the primary users. Furthermore, spectrum opportunitessysreetric.
Specifically, a channel that is an opportunity whéns the transmitter and the receiver may

not be an opportunity whe is the transmitter and! the receiver.

. MINIMUM-ENERGY MULTICAST TREE

Let . be the multicast source and the set of destinations. L&t be a multicast tree rooted
at 1 in the secondary networR/- the node set of’, andV;, C V the set of leaf nodes, then

the objective and the constraint of the minimum-energy multicast tree problem is given by

> 6(1/)] } s.t.ew(v) < ey(v) for all v e Vi, e Vi, andD C Vi,

veVr—Vrr,

argmin < E
T

wheree(rv) denotes the energy used by nadeonsisting of the sensing energy and the trans-
mission energyg,. () the energy used by nodefor each transmission, and,(v) the maximal
allowable transmission energy for node The sum ofe(r) does not includé’;, because the
leaf nodes in the multicast tree neither transmit nor detect the opportunity.

In general, the solution to the minimum-energy multicast tree should specify two parameters

for each secondary notlethe transmission power and the group of its intended receivers. But

2If a secondary node is not included in the multicast tree, then its transmission power is zero and the group of its intended

receivers is an empty set.
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it can be shown in the proof of Theorem 1 that given the group of the intended receivers, the
optimal transmission power is determined by the distance to the farthest intended receiver. It
follows that the minimum-energy multicast tree is fully determined by the group of the intended
receivers for each secondary node.

The approximation algorithm for the minimum-energy multicast tree is based on an auxiliary
directed graph with edge weights. We will address the construction of the auxiliary Graph

the calculation of the edge weights in the following two subsections.

A. Construction of the Auxiliary Graph G

The auxiliary graphGG is constructed in the following way. For each secondary nodaeth
degreek, we add2* — 1 multicast nodes; (1 < i < 2¥ — 1) which represent all possible groups
of its intended receivers. Then we connect the secondary medth each of its2* — 1 multicast
nodes by a directed edge and assign a positive weight to each edge (see Fig. 2). For the directed
edge (u, v;), the assigned weighi; is equal to the average energy required for transmitting
successfully fromu to the group of the intended receivers denoted pyFinally, we connect
eachy; with its corresponding intended receivers by directed edges and assign zero weight to

all those edges.

Fig. 2. Generation of multicast nodes for ngden the secondary network.

Based on the above construction, we see thé an edge-weighted directed graph, and it has
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two types of nodes: user node and multicast node. The user nodes represent the secondary users,
and the multicast nodes specify the transmission power and the group of intended receivers for
the user nodes. Léf; be the vertex set afr, and E; the edge set af/. Given the source € V
and a destination sdd C V4, the directed Steiner problem(y, D) is to find a tre€l’ rooted
at ; which spans all the nodes i with the minimum weight. Then we have the following
theorem about the relationship between the directed Steiner t@eaimd the minimum-energy
multicast tree in the secondary network.

Theorem 1. Given a multicast session in the secondary network,ldte the source, and
D the destination set. Define the weight of a tree in the auxiliary g@pas the total sum
of the weights of the edges in the tree, and the weight of a multicast tree in the secondary
network as the total sum of the average energy used by the nodes in the multicast tree. Then
the directed Steiner tree rooted;atwhich spans all the nodes i has the same weight as the
minimum-energy multicast tree in the secondary network.

Proof: Although the set of the transmission power that each secondary node can choose is
continuous, it suffices to consider a finite subset of it in order to obtain the minimum-energy
multicast tree. For a secondary nogdein the minimum-energy multicast tree, lgt, uo,...,

1, be the secondary nodes within the maximum transmission rangevdifich are listed in

an ascending order of the distance frgm Then under the disk signal propagation model,

the optimal transmission power fqor must belong to{0, Cd{, CdS,...,Cdy}, whereC' is a

constant,d; (1 < i < k) is the distance between and ;, and o path-loss exponent. Let

dy = 0 and d,,; = oo. Suppose that the optimal transmission power takes some other value

p* ¢ {0,Cdy,Cds, ..., Cdy} with Cd < p* < Cdg, for somei. We can always replaceg’ by

Cdy for the nodey, and it does not change the multicast tree but reduces the energy cost of

the multicast tree. It follows that the minimum-energy multicast tree is fully determined by the

group of intended receivers for each secondary node. Based on the construction of the auxiliary

graphG, we thus conclude Theorem 1. [ |
Based on Theorem 1, the problem of the minimum-energy multicast tree is transformed

into a directed Steiner problem via the construction of the auxiliary g@ptBy applying

an approximation algorithm for the directed Steiner problem [9{-tdsee Sec. IV), we can

obtain an approximate solution to the problem of the minimum-energy multicast tree.
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B. Calculation of the Edge Weights

Let » denote the multicast node which is connected to a group of intended recgivers, ..., i, }
for secondary node, then the weightv of the directed edgéy, v) is the expectation of the
sum of sensing energy and transmission energy until the last one in the fuoyp, ..., it }
receives successfully from, and it can be expressed as

> e+ etxl[tx(t))] : (1)

t=1
wheret is the slot index,I" a stopping time which is the number of slots fertransmitting

w=E

successfully to all the receivers that are connected, ta, the sensing energy per slet, the
energy used for each transmission, dpd¢) an indicator function which ig if x transmits in
slot ¢ and 0 otherwise.

Consider the following two transmission schemes for the secondary modee is thatu
transmits even if: only sees the opportunity from to some of the receivers that are connected
to v; the other is thaf: does not transmit untjk sees the opportunity from to all the receivers
that are connected ta If 1 uses the first transmission scheme (referred to as sequential scheme),
it may possibly transmit more than once, where each time it transmits to disjoint subgroups of
receivers that are connected:toAlthough the calculation of (1) can be formulated into solving
the absorbing time of a Markov chain in this case, the obtained expression is complicated and
difficult to evaluate.

If 1 adopts the second transmission scheme (referred to as simultaneous sghearemits
only once to all the receivers that are connected tohen ;. sees the opportunity from to all

the receivers. Then in this case, the edge weigltan be rewritten as
w = E[T]es + e,

whereT' is the first slot thaj: sees the opportunity from to all the receivers that are connected
to v. Due to the i.i.d. distribution of the primary network over sldfsis obviously a geometric
random variable with parametgg, wherep, is the probability of having an opportunity from

to all the receiverd iy, o, ..., i, } @t any given time. Under the disk signal propagation model,

we thus have that

w = es/po+ e

= ey/po + Cd%,
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where C' is a constantd the distance between and its farthest intended receiver, andhe
path-loss exponent.

The following proposition gives the expression fe.

Proposition 1: Let Apy be the density of the primary transmitters. Lief and R; denote
the transmission range and the interference range, respectively, of the primary users. Given
a secondary user and a group of its intended receivefg, s, ..., i }, l€t r; denote the
interference rangeof 1« when its transmission reaches all the intended receivers. Chopsisg
the origin of the polar coordinate system, we have that the probahility having an opportunity

from p to all its intended receivers is given by

Do = exp —)\me"% — // o (r)rdrdd | | (2)
Su

where

pr(r) = Apr {1 _ Sl By i) Rp’m)} :

TR2
St(r, Ry, rr) is the common area of two circles with radt, andr; and centered apart, and
Sy is the union of the circles with radi?; centered at each intended receiygr(1 <i < m).

Furthermore, we have

exp [—)\pT(ﬂ'T? + SU)} < pp < min {exp (—)\pTﬂ'T’?) , exp (—)\pTSU)} , 3)

where Sy is the area of the regiof.
Proof: From the definition of unicast spectrum opportunity given in Sec. 1I-B, we know
that a spectrum opportunity from to all its intended receiver$u, uo, ..., ., } 0ccurs if and
only if there are no primary receivers within distangeof 1 and no primary transmitters within
distanceR; of each receivey; (1 <i <m).
Let I(u, d, rx/tx) denote the event that there exists primary receivers/transmitters within dis-

tanced of a secondary user. Let I(y, d, rx/tx) denote the complement @f ., d, rx/tx). Then

3Since the minimum transmission power for successful reception is, in general, higher than the maximum allowable interference
power, it follows that the transmission rangg of i is smaller than its interference rangge, wherer, is set to be the farthest
distance betweep and its intended receivers. Furthermore, under the disk signal propagation and interference model, we have
rp=p0rr (0< B <1).
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the probabilityp, of having an opportunity fromu to {1, po, ..., it} 1S given by

po = PH{I(g,rr,rx) N I(py, R, tX) N - N L, Ry, tX)}

- Pr{I[(/*Lly RIa tX) AERRID H(:umy RI7 tX)| H(M? rr, rX)}Pr{H(% Tr, rx)}' (4)
Since the primary receivers admit a Poisson point process with dexsityit follows that
Pr{ll(ys,r1,rX)} = exp (_)\PTWT?) . (5)

Given I(u,ry, rx), i.e, there are no primary receivers within distance of p, based on
Independent Thinning Theorem [7, Chapter 5], we have that the primary transmitters form an

inhomogeneous Poisson point process with density specified by

Npr(r) = Apr {1 _ 5ilr B 1) RZ”TI)} :

2
7er

Thus,

Pr{l(pu1, Ry, ) O - O T(pn, By, )| L, 77, 1X) } = exp (—// XPT(T)TdeQ) : (6)
Su
Plugging (5, 6) into (4) yields (2).
From (4), we can easily see that
po < min{Pr{I(u,rr,X)}, PH{I(1, R, tX) O - O I(pon, R, tX) 1}
= min{exp (—Aprmr]), exp (—AprSu)}.

On the other hand, it follows from (6) that

Pr{I(p1, Ry, tX) O - O I gy Ry, tX)| T(pe, rr, 1X) > PHL(pey, Ry, tX) N - - N L, Ry, 1X)

By considering (4), we have that

Po > Pr{H(M? Tr rx)}Pr{H(:U“lv RI) tX) M---N I[(:U“mv RI) tX)}
= exp [~ Apr(mr] + Su)] .

Thus, the inequality (3) is shown. [ ]

From (2), we can see that the computatiorpgfrequires a double integral over an irregular
region which is the union of several circles. Due to the complexity of the computation, we use
the lower bound om, given in (3) as an approximation @f to obtain the edge weight, i.e.,

es
exp [—Apr(mr? + Sy )]

+ Od~. 7)

w =~
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IV. APPROXIMATION ALGORITHM FORDIRECTED STEINER TREES

In Sec. lll, we transform the problem of the minimum-energytioast tree into the directed
Steiner problem by deriving a directed graptwith weighted edges from the secondary network.
In this section, we present an approximation algorithm for the directed Steiner problem [9].

Consider a directed graphl = (V, E¢) whereVj; is the vertex setF is the edge set, and
each edge: € E is associated with a nonnegative weighte). Given a source: € V; and
a destination seb C V;;, we recall that the directed Steiner probleftu, D) is to find a tree
T rooted atu, which spans all the nodes iR with the minimum weight. Let: = |D| be the
number of destinations. A slightly more general version of the directed Steiner problem is to
find a treeT rooted at;, which spanst least m nodes inD with the minimum weight for some
m < k, which is denoted byA(u, m, D).

1) Preliminary Results: Assume that the directed gragh is strongly connected,.e., for
every pair of nodeg: and v, there exist at least one directed pathGnfrom p to » and at
least one directed path i@ from v to u. Then based oW:, we construct a complete grapfh
which has the same vertex s&t as G, and we let the weightv(u, v) of each edgé, v) in
G equal the shortest path distance framo v in G. AIthough@ contains more edges th&n
the solution to the directed Steiner problen?{(u,D) directly leads to the solutiofi’ to the
directed Steiner problemi(y, D) if we replace the edges &f that do not exist inG by the
corresponding shortest pathsGh

Let w(7T") denote the weight of a tre€ which is the total sum of the weights of the edges
in 7', and k£(7T") the number of destinations containediiy i.e,, k(7)) = |Vr N D|. Then we
define the densityl(T") of treeT" as the ratio of the weight df to the number of destinations
contained inT’, i.e.,

w(T)

AT T

A tree is said to be airlevel tree if no leaf is more thahedges away from the root. It is

11>

shown in [10] that for alll > 1 there exists ar-level tree that provides &'/* approximation
to the general directed Steiner probleiﬂﬁu,m, D), wherem < k is the minimum number of
destinations required to be contained in tHevel tree. A trivial approximation wheh=1 is

the combination of the edges 6f from the rootu to them destinations which are closer to

than the othek — m destinations (in terms of the shortest path distance). This approximation to
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ﬁ(u, m, D) gives an approximation tal(u, m, D) if we change the edges of that do not exist
in G into the corresponding shortest pathsinLet 7; denote the above approximate solution
to A(u, m, D) andT™ the directed Steiner tree fok(u, m, D) (i.e., the optimal solution). It can

be easily shown that the

w(Th)
wT) ="

2) Algorithm: This approximation algorithm is a special case of the approximation algorithm
for the general directed Steiner tree problezfﬁu,m, D) [9]. The basic idea is to recursively
obtain a[log k]-level tree 7" which provides alog k(log k — 1)k '°¢* approximation to the
directed Steiner problemﬁ(u?D) and then transforn?” into a treeT in the original directed
graphG.

Approximate Algorithm for Directed Steiner Problem A(u, D)

INPUT:

(i) An edge-weighted directed graph = (V, E¢), where each edge € E is associated
with a nonnegative weight (e);
(i) A sourcep € Vi; and a destination sdd C V; with sizek = |D|.
OUTPUT: A treeT rooted atu that spans all the nodes .

STEP 0 If not all the destinations irD are reachable from, thenRETURN ¢.

STEP 1 Derive a complete grap(~)7 from G. Specifically, for every pair of nodes andv in G, if
there exists a directed eddg, v) from p to v in G, i.e, (u,v) € E, we keep the edge
(11, v) along with its weight inG; if not, i.e., (1, v) ¢ E, we add an edgéu, ) in G and
assign the shortest path distance frono v in G to the edge as its weight i,

STEP 2 Invoke the functionF;(u, k, D) which returns ar-level treel as an approximate solution

to the directed Steiner problem(u, D), where
I = [logk].

Givenm < |D

, the functionF;(u, m, D) for i > 1 is defined recursively as follows:
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k < |D| (the number of nodes ).
IFi=1
T — the combination of the edges 6f from u to them nodes inD
which are closer tq: than the othek — m nodes inD.
RETURN 7.
ELSE
T — o.
Dy < D (the set of destinations that are not containefﬁn
muese <— m (the number of destinations that are neededfb).y
WHILE myep > 0
Tyest < ¢ and d(Tyes;) = 0o.
FOR each vertex € V and eachn’ (1 <m' < my.s)
T — Fia(v,m/, Diege) U{(p, )}
IF d(T") < d(Tyes:) (compare the density of the two trees)
Thest <— 1.
T — T U Ty (combineT andTj,.; into one tree).
Miest = Miest — | Diepe NV (Thest)|-
Diest = Diept — V(Thest) (V(Thest) is the vertex set of ).
RETURN T.

Notice that all the operations of the functidf(u, m, D) are performed on the complete
graphé, not the original directed grap®y.
STEP 3 Transform the tred’ in G into a treeT” in GG by changing the edges @f that do not exist

in G into the corresponding shortest path€inThe detailed procedure is shown as below.
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T — ¢.
FOR each edge € E(T) (E(T) is the edge set of tre€)
IF e € E(G) (E(G) is the edge set of grapfy)
T—TUe.
ELSE
L. < the shortest path i’ corresponding te.
T+ TUL,.
RETURN T

This is the end of this algorithm.

Remark. If T is an optimal solution to the directed Steiner probletfy, D), then after we
replace the edges df that do not exist inG by the corresponding shortest pathsdhn we
obtain an optimal solutiof’ to the directed Steiner problem(u, D). It is easy to see thaf
does not have duplicate edges@®f otherwise removing these additional edges yields a’tfee
with a smaller weight thaf’ which leads to a contradiction. But sinéeis only an approximate
solution to the directed Steiner probleﬁ(u, D), it is possible that during step 3, before adding
edgee or the shortest patlh, corresponding to edgeto the treeT’, either the edge or some
edge on the shortest path is already included in the trég. In this case, this duplicate edge

is not added to the tre€ after the combination of’ ande or L.. It implies that

w(T) < w(T).

On the other hand, it follows from the relation between the original directed graphd the
complete graplt; thatw(7*) = w(T*) whereT* andT* are the optimal solutions to the directed
Steiner problemsA(y, D) and A(u, D), respectively. We thus have that the approximation ratio
of T is bounded above by the approximation ratioZofi.e.,
w(T) _ w(T)
w(T*) = w(T)
wherek = |D| is the number of destinations iD.

~ O(log” k),

V. APPROXIMATION ALGORITHM FOR MINIMUM -ENERGY MULTICAST TREE

In this section, we present the approximation algorithm feg minimum-energy multicast

tree and analyze its approximation ratio and time complexity.
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A. Algorithm

As discussed in Sec. lll, the approximation algorithm for the minimum-energy multicast tree
relies on the approximation algorithm for the directed Steiner problem given in Sec. IV. The
procedure of this approximation algorithm is detailed as below.

Approximation Algorithm for Minimum-Energy Multicast Tree

INPUT:

(i) A secondary network wher& denotes the set of nodes.
(i) The transmission range of each secondary node which is determined by the maximal
transmission power for the secondary node.
(iii) A source p € V and a destination séd C V' with sizek = |D|.
OUTPUT: A multicast tre€l’ rooted ati that spans all the nodes .
STEP 1 Construct the auxiliary grapty.

1.1 Add the multicast nodes for each secondary node (see Sec. IlI-A).

1.2 Use (7) to compute the weight for each edge&inSince there is no closed-form
expression forSy; which is the area of the uniof;; of several circles, we resort to
the Monte Carlo method. Specifically, we generateoints uniformly distributed in
a square with side lengtth, which containsS;;, and we count the number of points
that fall into S;;, denoted byNs. Then we have

Ns ,
~ —d-.
Sy v s

STEP 2 Apply the approximation algorithm for the directed Steiner problem given in Sec. IV to
the auxiliary graphz and obtain an approximate Steiner tfBe in G.
STEP 3 Transform the approximate Steiner tfBeinto a multicast tre€” in the secondary network.

The detailed procedure is shown in the following table.
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T — o¢.
FOR each node’ € V(Ty) (V (1) is the vertex set of tre@(;)
IF v eV (i.e, v is a user node, wher€ is the node set of the secondary netwark)
T—TUw.
ELSE (i.e, v is a multicast node)
{v1,va, ...,vn} < the group of intended receivers denoted:by
T —TU{v, v,y U}
1 < the parent ofv in T¢.
T —TU(U™ (u,vy)), where(u,v;) is a directed edge from to v;.
RETURN T.

This is the end of the algorithm.

Remark. It is possible that for some user noden the approximate Steiner tré;, it has
more than one child, that is, it has more than one group of intended receivers. Take two groups
G4, G4 of intended receivers as an example, and the case of more than two groups of intended
receivers can be easily extendeddf N G, = ¢, it implies that the secondary nodeshould
first multicast toG; and thenGG, (a sequential way), or multicast @, in odd slots and td~,
in even slots (an alternating way). &, N G5 # ¢, then we can replac&; by G; — G; N G,
and do the multicasting as the case(4fnN G, = ¢. It is easy to see that this replacementCif
can only reduce the average energy cost of the resulting multicast tree, and it does not change

the resulting multicast tree.

B. Approximation Ratio and Complexity

For the approximation ratio and the complexity, we have the following theorem.

Theorem 2. Let 7 be the minimum-energy multicast tree in the secondary network,7and
the multicast tree given by the approximation algorithm in Sec. V-A. Define the weighj}
of a multicast tre€l’ as the total sum of the average energy used by the nodes in the multicast
tree. Then we have

w(T)
w(T™)

where D is the set of destinations and| denotes the size ab.

< [log | D|1([log| D] — 1)| D|~MelPIT, (8)
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Furthermore, the time complexity of the approximation algorithm for the minimum-energy
multicast tree i) <(2kn)1°g|D| |D|?os 1Dl kn?k), wherek is the maximal degree of the sec-
ondary nodes and the number of secondary nodes.

Proof: Based on Theorem 1, we know that the weight/™) of the minimum-energy
multicast treeT is equal to the weightv(7;) of the Steiner treel.. Moreover, when we
transform the approximate Steiner trég into the multicast tre€/’ in Step 3, we have that
w(T) < w(Tg). Sincew(Tg)/w(T}) < log|D|(log|D| — 1)|D|~'°¢P! (Theorem 4 in [9]), it

follows that

W(T) _ w(Te)
W(T) = w(Ty)

On the other hand, Step 1 tak@gkn2*) time since every user node has at mfst 1 multicast

< w(Tg)/w(Tg) < log |D|(log |D| — 1)| D]~ 8171,

nodes, and each multicast node is connected to at lnogended receivers. Similarly, Step 3
can be done irO(kn2*) time. By noticing that the auxiliary grap' has O(2*n) nodes and
settingi = log | D| in Theorem 4 [9], we have that Step 2 taI(és((2kn)1°g‘D‘ \D\21°g|D|> time.
Thus, the time complexity of the approximation algorithmﬂ's{(2’“n)logID| | D|?1os 1Pl 4 k‘n2k).

[

VI. SIMULATION RESULTS

In this section, we present several simulation results. \&egi0 secondary nodes uniformly
in a 500m x 500m square such that they are connected if they use their maximal transmission
power, and we fix their positions during the whole simulation. Other simulation parameters are
given by:r, = R, = 130m, r; = R; = 144m, e;, = 3 x 107*d?, ande, = 1.

Since there is no comparable algorithm for cognitive radio networks, we choose the approx-
imation algorithm proposed in [4] for conventional wireless networks and compare its perfor-
mance with that of our approximation algorithm in cognitive radio networks. The percentage
of the average energy saving of our approximation algorithm under different traffic load of the
primary network (represented by the density of the primary transmitters) is shown in Fig. 3.
The conventional approximation algorithm, which treats the secondary network the same as a
primary network, transforms the multicast problem into an undirected node-weighted Steiner
tree problem, and gives a multicast tree invariant to the primary traffic load. Conversely, our

approximation algorithm takes into account the sensing energy, and produces the multicast trees
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that adapt to the primary traffic load. We can see that our approximation algorithm can save up
to 9 ~ 34% of the total energy, and the energy saving becomes more substantial as the primary

traffic load increases.
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Density of Primary Transmitters (per kmz)

Fig. 3. Percentage of average energy saving vs. density of primary transmitters.

We also study the impact of the primary traffic load on the minimum-energy multicast tree.
Fig. 4 shows the average energy cost of the sequential and the simultaneous schemes (see
Sec. 1lI-B) for a fixed multicast tree. We observe that the sequential scheme performs worse
when the primary traffic load is low, whereas it performs better when the primary traffic load
is high. Since the sequential scheme may probably lead to more than one transmission for
each edge in the multicast tree, it usually costs more transmission energy than the simultaneous
scheme. But on the other hand, it does not need to wait for all the intended receivers seeing
the opportunity, and thus it costs less sensing energy than the simultaneous scheme. As the
primary traffic load increases, its saving in the sensing energy gradually exceeds its extra cost

in transmission energy.

VII. CONCLUSION

In this paper, we have presented a low-complexity approxamaalgorithm with bounded

performance guarantee for constructing the minimum-energy multicast tree in cognitive radio
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Fig. 4. Average energy cost of the sequential and the simultaneous schemes (in logarithmic scale) vs. density of primary

transmitters.

networks. This approximation algorithm takes into account the energy used for sensing the
spectrum opportunities, and its constructed multicast trees are adaptive to the traffic load of
the primary network. Simulation results have demonstrated its substantial energy saving energy,
compared with a well-known conventional approximation algorithm. Furthermore, we study the
impact of the primary traffic load on the minimum-energy multicast tree. Simulation results have
shown that the simultaneous transmission scheme is more suitable for light primary traffic load,

while the sequential transmission scheme is desired for heavy primary traffic load.
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